Outside of Normal Operating Conditions: Using Commercial Hardware in Space Computing Platforms for Ubiquitous Sensing

Heather Quinn Los Alamos National Laboratory

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Overview

- Ubiquitous Sensing for National Security Needs
- Flying Commercial
- Radiation Tests to Reduce Risk
- Conclusions

UNCLASSIFIED

Sensing Applications for National Security

- In recent years, much of LANL's mission has focused on persistence surveillance of targets and interests to provide an overall reduction in threats to the US
- This data plays an important role in national security and policy decisions
- Data are collected from a number of platforms: distributed sensor networks (DSNs), airplanes, unmanned aerial vehicles (UAVs), and satellites
- The collected data is from a number of sensor types: imagery, seismic, radiation, temperature, radio frequency
- Many of these sensors grew out of science programs
 - Satellite-based detectors that could sense neutrons in the ground have been used to determine whether there is water on Mars and whether there is nuclear proliferation

http://mars.jpl.nasa.gov/mgs/gallery/images/mgs-mons.jpg

UNCLASSIFIED

Transitioning to Ubiquitous Surveillance

- The lab is striving for a global reduction of threats
- The lab's mission is to grow our sensing capabilities so that we could provide constant, global – ubiquitous – surveillance
 - Increasing the view of our sensing capabilities provides more information, giving us global coverage
 - Increasing the sensitivity of our sensing capabilities provides more accurate information
 - Increasing the number and types of surveilling platforms to provide options for collecting data
- The better, the wider, the more proliferate our sensing capabilities are, the less likely we are to miss important events around the world

UNCLASSIFIED

Examples of Ubiquitous Sensing

DSNs:

- Smart paint that can monitor the integrity of physical infrastructure, such as buildings or bridges
- Intelligent rocks that can monitor the movement of radioactive materials on highways

Airplanes/UAVs:

• Wide area persistence imagery that can track movement through cities

Satellites:

- Neutron detectors that can globally monitor the adherence to the Comprehensive Test Ban Treaty.
- Imagery that can globally monitor whether nuclear plants are being built that could be later disguised

http://int.lanl.gov/news/index.php/fuseaction/home.story/story_id/11142

UNCLASSIFIED

Challenges of Ubiquitous Sensing

- Designing wide-area, extremely sensitive sensors is challenging
 - Done with one, expensive and expansive sensor or tons of less expensive, less capable sensors?
 - How to blend different sensor types and capabilities?
- Wide area, constant surveillance stresses computation and communication systems
 - Do you need to trade off computation for communication?
 - How much can processing can be completed on the system?
- The amount of data collected from these efforts presents many challenges
 - We <u>could</u> reduce transmission of unusable or uninteresting data, transmit information instead of data, prioritize data for retrieval
 - We <u>could not</u> do that in the late 1990s using radiation-hardened electronics

UNCLASSIFIED

LANL's Approach to High-Performance On-Orbit Processing: Using Commercial Technologies through Advanced Engineering

- Use commercial-based technologies for high performance portions of the space systems
 - Leverage billions of dollars of world-wide commercial investment in semiconductor technology
 - Employ well-tested technologies with large user bases rather than unique space solutions
 - Exploit inherent radiation tolerance (e.g., total ionizing dose) of these components
- Use system-level, module-level, and application-level engineering to provide the robustness needed for the system (don't "over-engineer" systems)
 - Employ an excellent understanding of both mission and technologies
 - Employ existing and new mitigation techniques to add robustness: e.g., redundancy, repair, and reconfiguration
- Use more conventional radiation-hardened technologies in high-risk portions of the system or where performance and cost are not drivers
 - Spacecraft interfaces
 - Critical non-volatile memory

UNCLASSIFIED

COTS Electronics in Space

- Fifteen years ago LANL partnered with Xilinx to determine if the commercially-available, radiation-tolerant Xilinx Virtex fieldprogrammable gate arrays could be used in space
 - Could these components provide the speed and agility we wanted without corrupting our data stream and affecting our national security mission?
- To use this hardware in space a number of questions needed to be answered:
 - Would radiation cause destroy the FPGA while in space?
 - Would radiation-induced errors make fault-tolerant computing impossible?
 - Could we mitigate the radiation problems?
 - Would the package survive the vibrations caused by the launch without breaking off the board?
 - Could the package handle the thermal cycles without breaking the FPGAs off the board or having temperature-related reliability problems?

UNCLASSIFIED

Slide 8

Fault-Tolerant Computing with FPGAs in Space

- Components did not exhibit destructive radiation effects but did exhibit singleevent upsets (SEUs or upsets)
 - Upsets cause memory cells to change values
- Radiation testing showed that even a single SEU can cause the circuit to output bad data
 - Accumulating SEUs increase the likelihood that output data is corrupted and increase device's current draw
- The component is essentially "blank" and we could decide how to mitigate errors
 - To date, best option for mitigation SEUs is to mask them through triple-modular redundancy (TMR)
- The device is reprogrammable: the configuration ports could be used to fix the radiation-induced faults
 - On-line reconfiguration, called scrubbing, used to remove SEUs
 - Off-line reconfiguration used to remove SEFIs

UNCLASSIFIED

Cibola Flight Experiment: Demonstration of Fast On-Board Processor with COTS Parts

Mission Response Module: Second Demonstration of Fast On-Board Processor with COTS Parts

- Launched into low Earth orbit in 2011 on a US Department of Defense satellite
- Software Radio:
 - Four channels, 60 MHz bandwidth each
 - Two separate units with two Xilinx Virtex-4 FPGAs: each unit can tune to the same or different channel

UNCLASSIFIED

Slide 11

Life after CFE and MRM

- In 2008, the DOE gave us the chance to transfer our knowledge from CFE and MRM (still in integration) to the operational DOE space mission:
 - Space-based Nuclear Detonation Detection (SNDD) is a suite of payloads integrated into GPS satellites
 - Provide 24x7 converge of the Earth for Comprehensive Test Ban Treaty monitoring
- One of the hardest/worst space missions:
 - Long duration
 - Heightened radiation environment
 - Nuclear survivable
 - ... and we want to build the payloads out of \$2 commercial components that are designed to work in cars and toasters

UNCLASSIFIED

Slide 12

Reducing Risk through Environmental Testing

- Most commercial components have not been tested for radiation effects
 - The only way to put them into GPS is to prove that it will not hurt the DOE or GPS mission
 - The parts need to be qualified for space usage, which means that we need extensive test radiation data

But first we needed to find candidate parts....

- FPGAs were an accidentally perfect first demonstration vehicle:
 - The Xilinx FPGAs did not have a sensitivity to destructive single-event effects
 - The FPGAs had a good, natural tolerance to total ionizing dose
 - The lab was filled with expert FPGA designers that could work with or around the design tools as necessary
- We suddenly need to cope with an onslaught of really bad electronic components
 - Many of the components are highly sensitive to destructive single-event effects
 - Some of the components are so complex that there is an entire zoo of failure modes

UNCLASSIFIED

Screen All of the Components at LANSCE First

- It was clear that we needed to start using LANSCE as a testing partner
 - The fast neutrons are a reasonable analog to high-energy protons
 - We needed to "slow down" our tests so that we could observe the errors in the components one at a time
 - The single-event effects are from a indirect ionization reaction is 5-7 orders of magnitude smaller than the direct ionization effects we were getting at heavy ion accelerators
 - The flux was not as high as proton accelerators
 - The neutrons are non-ionizing, so we do not churn through parts due to doserelated problems
 - The location is also extremely convenient for us
- We developed a policy to screen parts at LANSCE before moving onto heavy ion testing
 - If the component could not survive a LANSCE test, then it would not survive the rest of the qualification process or a long space mission
 - It is still possible to have failures at heavy ion facilities, but not as many

UNCLASSIFIED

Slide 14

Advantages of Testing at LANSCE

- We tested both parts at LANSCE and LBL
- One part had no destructive failures at LANSCE, but had some destructive failures at a high threshold at LBL
 - Could still be a reasonable part to deploy
- The other part had destructive failures at LANSCE and many destructive failures at LBL
 - We did not need to do more testing at LBL after the failures at LANSCE....

UNCLASSIFIED

Slide 15

Memory

Memory is an essential part of computational systems

- For many systems the source of where many radiation-induced errors comes from
- For deployed systems need to find reasonable memory components
- Particularly difficult to find dynamic RAM without destructive failure modes and low SEFI sensitivities
- Over the years we have tested many different samples of SDRAM from many of the SDRAM manufacturers
 - Memory array has very low sensitivity to SEUs, but the memory array is very large
 - The SEFI sensitivity is very high, but is on the order of a single SEU across the entire memory array

Sample	SEU Bit Cross-Section (cm ² /bit)	SEFI Device Cross-Section (cm ² /device)	
SDRAM1	2.14x10 ⁻²⁰	4.76x10 ⁻¹²	
SDRAM2	2.15x10 ⁻²⁰	1.62x10 ⁻¹⁰	
SDRAM3	7.54x10 ⁻²⁰	7.71x10 ⁻¹²	
SDRAM7	7.23x10 ⁻²⁰	1.79x10 ⁻¹¹	
SDRAM8	1.72x10 ⁻²⁰	6.94x10 ⁻¹¹	
SDRAM9	(0, 2.32x10 ⁻¹⁹)	1.26x10 ⁻¹¹	
SDRAMA	4.43x10 ⁻²⁰	(0, 2.20x10 ⁻¹¹)	

UNCLASSIFIED

Slide 16

SDRAM SEFIs

- The SDRAM SEFI failure mode is particularly destructive to data:
 - The radiation strike causes one to many bits to be overwritten for entire column of the device
 - Many of these errors cannot be corrected with standard "correct one, detect two" encoding schemes
- To use many of these parts, would need to use block encoding schemes, which might not work with the computational model for how the memory is accessed

UNCLASSIFIED

ARMs and Microcontrollers

- Finding a reasonable microcontroller for background and configuration tasks will allow us to reserve the radiation-hardened microprocessor for mission critical processing
- We have tested:
 - ST Micro ARMs
 - Texas Instruments MSP430, DSPs and ARMs
 - Xilinx ARM
 - NXP ARM

UNCLASSIFIED

Texas Instruments C6474 Tri-core DSP

- We were particularly interested in this DSP for several trips:
 - Large amount of memory
 - Fast computation of signal processing data sets
- The error rates were particularly high, but we found that it was possible to mask the errors in hardware using software mitigation

		Cross-Sections	
	SEU bit-cross-section	7.30 × 10 ⁻¹⁶ cm²/bit (4.45 × 10 ⁻¹⁶ cm²/bit, 1.12 × 10 ⁻¹⁵ cm²/bit)	
4	SEU device cross-section	ice cross-section $1.65 \times 10^{-7} \text{ cm}^2/\text{device}$ (1.01 × 10 ⁻⁷ cm ² /device, 2.54 × 10 ⁻⁷ cm ² /device)	
	SEFI cross-section	$4.13 \times 10^{-10} \text{ cm}^2/\text{device}$ (1.76 × 10 ⁻¹⁰ cm ² /device , 8.16 × 10 ⁻¹⁰ cm ² /device)	
		UNCLASSIFIED	Slide 19

Use LANSCE to Experiment with Mitigation

- After eliminating parts with destructive effects, we might still have components that will destroy the data
- Testing mitigation methods requires ensuring only one error is in the system at a time
 - Impossible to do at heavy ion facilities for many components
 - Many accelerators cannot be tuned to a flux that low without problems with dosimetry
 - UC-Davis and LANSCE can both be tuned low enough to allow for mitigation tests
 - LANSCE is still in a great location for us
- The last several years we have been doing extensive testing to show that our mitigation method for FPGAs can be ported to microprocessors

UNCLASSIFIED

Slide 20

Unmitigated Software Test Results on the C6474 DSP

• Not all SEUs will create SDC, crashes, or other types of errors

- Device utilization, logical masking, and compensating failures lower the error rate
- SEUs can be categorized into ones that create observable errors by affecting calculations and ones that do not

• The length of time the data is in the cache is important

- For data that is read once, the SEU would need to occur in between writing and reading any SEUs after reading would not be observed and likely overwritten
- Global values or constants are more likely to have observable errors because the values are read repeatedly without refreshing

The amount of data needed for a calculation is important

• The more data that a calculation uses, the more likely SDC will affect the calculation

UNCLASSIFIED

Unmitigated Software Test Results on the C6474 DSP

- By studying the amount of time data remains resident in the L2 cache, we can understand the difference in the reliability of long-term and short-term resident data variables
- Some data will be read many times and some data will be read only once
- These results show that there is nearly 15 times decrease in noticeable errors from data that is read frequently to data that is read once
- This result indicates that selective TMR approaches will be more useful for data that is written once and read many times, such as global constants.

UNCLASSIFIED

NS

Mitigated Software Test Results

- While the SEU bit cross-sections are quite small, the SEFI crosssections are 400 times larger
 - For many calculations dual module redundancy (DMR) would not be strong enough
 - Triple-modular redundancy (TMR) would provide masking, which can be useful for higher error rates
 - DMR fails at 2x the rate of the unmitigated code and must be reset after each error
 - TMR fails at 3x the rate of the unmitigated code and can mask at least 1 error

• The TMR granularity is important

- The more data that are used, the more likely the calculation fails
- Fine-grained granularity can tolerate more errors

• The software structure is important

• The reliability of recursive codes will be dependent on the iteration – the more iterations, the more likely a failure could be accumulated

UNCLASSIFIED

Benchmarking at LANSCE

- Recently have been part of a collaboration for developing standard benchmark codes/circuits for radiation tests of mitigated software/hardware
 - Need to be able to determine whether the mitigation process is masking errors in the system
 - Need to be able to determine which mitigation technique to use for the (power, speed, effectiveness) tradespace
- Ten organizations have been collaborating for over a year to design a benchmark

First Benchmark Test at LANSCE in December 2014

UNCLASSIFIED

Slide 25

Microcontroller Results

Code	Tiva	MSP430F2619	MSP430FR5739
AES	0.30 (0, 1.1)	0.38 (0.04, 1.37)	0.85 (0, 3.1)
AES TMR	0.31 (0, 1.1)	3 (1, 5)	2 (0, 7)
Cache	75 ± 10	8 ± 2	10 (6, 15)
Cache TMR	0.27 (0, 1.0)	0.21 (0, 0.76)	2 (0, 8)
Coremark	0.75 (0.15, 2.20)	1.27 (0.51, 2.61)	N/A
M x M	59 ± 13	4 (2, 6)	1 (0, 4)
M x M TMR	10 (7, 14)	0.27 (0, 1.0)	2 (0, 8)
Qsort	59 ± 13	3 (2, 5)	25 (16, 38)
Qsort TMR		7 (4, 10)	

Software was mitigated using Trikaya software technique for s/w mitigation

- These results show that AES-128 is naturally resistant to errors: very small amount of memory and processing
- Many similarities in results due to forcing similar amount of memory
- These values are not normalized to amount of work performed:
 - Cache test makes the MSP430F2619
 look like the most robust operation
 - In reality, it is doing far less processing than the Tiva
 - The slower processing in Coremark shows how the slower processing decreases resilience to errors

LOS Alamos

UNCLASSIFIED

Slide 26

Conclusions

- Ubiquitous sensing is an important aspect of national security and reducing global threats
 - The amount of data collected drives the need for more efficient computational and communication systems
 - FPGAs have been useful in both ground-based and satellite-based systems
 - Expanding the program to look at more commercially available electronics alternatives to radiation-hardened electronics
- Radiation testing showed that fault-tolerant computing could be difficult
 - Many components are sensitive to SEL that could damage the component or SEUs/SETs that could damage the data
 - Mitigation is possible, but requires extensive testing
- Testing partners, like LANSCE, are a valuable asset for next-generation computational design work

UNCLASSIFIED

Slide 27

